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PRINCIPLES OF OPERATION REVIEW

m
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PRINCIPLES OF OPERATION--REVIEW


1) Incoming radiation is coupled through an antenna element (engineered to guide 
surface plasmon waves (skin effect) at higher frequencies) to create a modulated 
AC electric field 

2) Direct current harvested across a matched MIM tunneling diode barrier 
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Characteristics (Solar radiation) 

– Average radiation power/unit area equal to 1500 W/m2 

–	 Over 95% of spectrum contained in 2 m m (150 THz) 

to 0.3 m m (1000 THz) band; 4:1 Bandwidth 
PHASE CHANGEPHASE CHANGEPHASE CHANGEPHASE CHANGE 

–	 Time Harmonic components are not polarized and 

therefore considered as elliptically polarized 
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COUPLING INCOMING SOLAR RADIATION
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COUPLING-- INCOMING SOLAR RADIATION


• Design Strategy 

–	 Antenna (Rectification) scales with frequency 
enabling low frequency performance (i.e., 
efficiency) validation 

–	 Broadband (4:1) grid array (with loaded grids < 0.5 l ) 
is ideally suited due to the symmetry of horizontally 
and vertically polarized waves 

–	 Since polarization of the sun is statistical, two feeds 
for each orthogonal polarization 

–	 Prior art: low frequency, “rectenna” concepts 
demonstrated >85% efficient (full wave rectify) 

–	 Capitalize on frequency independent characteristics 
of diode 
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RECTIFICATION: FREQUENCY DEPENDENCE
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RECTIFICATION: FREQUENCY DEPENDENCE


• Above THz: Modulation 

Induced 
Optical– I-V characteristics show additional peaks due 

t 0 Voltage 

Optical 
Current 
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to field-assisted electron tunneling 
processes 

–	 Increased power output within an integral 
number of photon energies, hn /e, of the 
diode turn-on voltage 

• Below THz: 

–	 Response rolls over to classical rectification 
(hn /e is smaller than the voltage scale of the 
DC non-linearity) 
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SOLAR ENERGY HARVESTING FOMSOLAR ENERGY HARVESTING -- FOM


• GOALS: Exceed theoretical limit (i.e. 30%) of single junction solar cells in solar spectrum 

– Quantum efficiency: i.e. # of electrons by which current changes> 90%
# of incident photons 

– Conversion efficiency: > 40% in THz region (i.e quantum regime) 

– Power density: > 30 mW/cm2 (> 30 mW out from incoming 100 mW/cm2) 

•	 APPROACH: Due to inherent frequency scaling attributes, validate concept and 

performance at low frequency; transition to high (quantum) frequencies. 

–	 Barrier Engineering in tunneling diode at both low (micron scale) and high (nano scale) 

frequency 

– Monolithic, parallel processing provides geometric scaling 
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LOW FREQUENCY (10 GHz) DEMONSTRATIONLOW FREQUENCY (10 GHz) DEMONSTRATION


• Measured efficiency @ 10 GHz with inexpensive Schottky diodes (4:1 bandwidth) 
• Efficiency limited only by saturation of diodes 
• Both 30 GHz and monolithically integrated 90 GHz demos in progress (w/ MIM diodes) 
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PARAMETRIC STUDY OF MIM TUNNEL DIODESPARAMETRIC STUDY OF MIM TUNNEL DIODESPARAMETRIC STUDY OF MIM TUNNEL DIODES


Metal Work 
Function Difference 

Barrier Height 

•Heights: 

• Assumes trapezoidal barrier from BDR Model 

•Barrier Parameter Space 

•Thickness: 2.5 

•Current test system: 

• Balance between quantum efficiency ( 93%) 

coupling efficiency (antenna matching) 

•Engineer non-linearity and asymmetry (conversion 
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efficiency non-optimized) d = 2.5 nm d = 3.0 nm d = 3.5 nm 

F1 = 0.36 V 
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BARRIER ENGINEERING-MODEL VALIDATIONBARRIER ENGINEERING-MODEL VALIDATION
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• I-V response as a function of decreasing barrier thickness (mm-scale MIM)



OPTICAL RECTIFICATION @ 30 THz

m

OPTICAL RECTIFICATION @ 30 THz


•Observed optical rectification with a R.T., unbiased planar MIM diode 
•Demonstrated high current capacity (tested to 500mW) and process yield 

eblitn56 D6: Nb-NbO-Ag nano-MIM 
curvature of I(V) as compared to optical reponse 
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SUMMARY UNIQUE FEATURESSUMMARY--UNIQUE FEATURES


• Energy Coupling 

–	 Planar, broadband (4:1) grid array structure to couple to incoming elliptically 
polarized (complex) wave (engineerable coupling) 

– Efficiency limited only by saturation of diode (Schottky) 

• Rectification AC (both classical and quantum) DC 

–	 Vacuum deposited, planar (lithographic) MIM diode structure with minimal parasitic 
capacitance loss 

–	 Ability to optimize, via engineering of non-linearity/asymmetry, classical responsivity; 
first ever zero bias optical response @ 30 THz for planar MIM 

–	 Ability to balance high quantum efficiency and impedance matching to achieve high 
conversion efficiency (current challenge) 

• Design 

–	 Frequency scaling: performance optimization at low frequency, la rge size and then scale 
to high frequency 

–	 Geometric scaling: Large area, parallel processing (i.e., soft lithography/self organizing 
arrays) with monolithic integration 
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Applications Energy HarvestingApplications -- Energy Harvesting


• Optical Frequencies (long term payoff) 

–	 Direct power integration into microsystems, such as micro-sensors, 

micro-electromechanical, and micro-air vehicles 

–	 In combination with rechargeable battery, high efficiency power source 

for portable and remote electronics 

• Millimeter/Microwave Frequencies (near term payoff) 

–	 Recycling (DC power generation)/shielding of stray RF fields at antenna 

tower stations (also cellular base stations) 

– Stealth (broadband absorption of reflected, complex polarized source?) 

–	 “Spin-off”: 

» Passive millimeter ranging @ 90 GHz (concept in progress) 

» Active metal detection (security) @ 90 GHz 
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Applications Energy Harvesting (cont)Applications -- Energy Harvesting (cont)


• Infrared Frequencies 

– Harvest IR radiation from blackbody sources at off-normal incidence 

–	 Use (3-D) monopole array to couple with near/far field of source (i.e., TPV 
emitter or low temperature source such as fuel, wood, etc.) 

–	 Feasibility demonstration using low-cost, electrochemical processing 
techniques 
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Applications OtherApplications -- Other


• Imaging/Sensing/Detection 

– Performance attributes 

»	 Extremely high bandwidth (30 THz) => high speed device (optic); as 
compared to 3-5 THz for high speed Schottky diode (SOA) 

» High non-linearity => high quantum efficiency (93%) 

» Un-cooled operation (i.e., room temperature IR detection) 

–	 Fabrication 

» Low-cost, parallel processing 

» Monolithic integration (incorporate sensor with downstream electronics) 

•	 Integration of multiple functions into single platform 

(i.e., antenna, energy harvesting, detection, etc.) Return to Agenda 

Next Presentation 

13 

APRIL 14, 2000 


